毕国强教授

文章出处: 作者: 发布时间: 2015-02-13 访问次数: 876

毕国强,Ph.D.

教授,博士生导师。 教育部“长江学者”特聘教授,中科院“百人计划”获得者,国家杰出青年基金获得者,国家重大研究计划项目着席科学家

电子邮箱:gqbi@ustc.edu.cn

教育及工作经历

       1989年毕业于北京大学物理系,获理学士学位

1991年纽约大学物理学硕士

1996年加州大学伯克利分校生物物理学博士

1996 2000年于加州大学圣地亚哥分校从事博士后研究

2000 - 2008美国匹兹堡大学医学院神经生物学系助理教授、副教授(终身职)

2007 - 中国科学技术大学教授

2008 - 中国科学技术大学新创讲席教授,教育部长江学者特聘教授

2010 - 中国科学技术大学神经生物学与生物物理学系主任

2010 - 合肥微尺度物质科学国家实验室集成影像中心联合主任

 

主要学术成就

主要从事包括生物物理与神经科学基础交叉研究,在细胞膜动力学、神经可塑性、以及前沿影像技术的发展与应用方面做出了较重要贡献。发表论文30余篇,被引用5000余次。

1、发现钙调控囊泡转运与融合作为细胞膜修复的生物物理机理(Science 1994; J Cell Biol 1995, 1997; J Cell Science 1999)开辟了细胞生物学研究的一个新方向,为学术论文、综述、以及教科书广泛引用(总引用700余次)。

2、发现精确放电时间依赖的突触可塑性(Spike-timing-dependent plasticity, STDP)(J Neurosci 1998, 2000a, 2000b; Nature 1999; Ann Rev Neurosci 2001等),阐明STDP模块化整合和受多巴胺调控的的二级规则及其细胞信号机理(Nature Neurosci 2005; Trends Neurosci 2005; J Neurophysiol 2005, 2007 PNAS, 2009等)。此一系列研究不仅促进了理论与实验神经科学的发展,而且在信息科学、人工智能等领域产生了较广泛的影响,其中J Neurosci1998)论文作为该领域的经典论文,单篇引用超过2000次。

3、在离体神经网络中发现持续回响活动及其突触动力学机制(PNAS, 2005; Phys Biol 2007),验证了著名的Hebb细胞集群(Cell Assembly)假说的生物物理基础。

4、发展了细胞器等亚细胞结构的活细胞超高分辨率荧光成像的新技术(PNAS 2012),开发了冷冻光电关联显微成像装置和高分辨关联算法。

 

所获奖励

Burroughs Wellcome Career Award in the Biomedical Sciences2000

Chancellors Distinguished Research Award 2006

中科院百人计划(2007

教育部长江学者(2007

国家杰出青年科学基金(2007

中科院百人计划终期评估优秀(2013 

 

学术与社会任职

2007 Member, NSF panel on Emerging Modeling Technology

2009中国光学会生物医学光子学专业委员会主任委员

2010中国生物物理学会理事

2011中国神经科学会理事、神经技术分会副会长

2011 Councilor, Molecular and Cellular Cognition Society Asia Chapter

2013美国神经科学会学术伦理委员会委员

期刊编委:

2008 Frontiers in Neuroengineering

2010 Neuroscience Bulletin

2012 Molecular Brain

2014 Chinese Journal of Applied Physics

2015 Biophysics Report 

 

学术论文

1. Denetclaw WF, Jr., Bi G, Pham DV & Steinhardt RA Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control.Mol Biol Cell 4: 963-972 (1993).

2. Steinhardt RA, Bi G & Alderton JM Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263: 390-393 (1994).

3. Bi GQ, Alderton JM & Steinhardt RA Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131: 1747-1758 (1995).

4. Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM & Steinhardt RA Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol 138: 999-1008 (1997).

5. Bi GQ & Poo MM Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464-10472 (1998).

6. Bi G* & Poo M Distributed synaptic modification in neural networks induced by patterned stimulation.Nature 401: 792-796 (1999).

7. Togo T, Alderton JM, Bi GQ & Steinhardt RA The mechanism of facilitated cell membrane resealing. J Cell Sci 112 ( Pt 5): 719-731 (1999).

8. Andersen SS & Bi GQ Axon formation: a molecular model for the generation of neuronal polarity.Bioessays 22: 172-179 (2000).

9. Tao H, Zhang LI, Bi G & Poo M Selective presynaptic propagation of long-term potentiation in defined neural networks. J Neurosci 20: 3233-3243 (2000).

10. van Rossum MC, Bi GQ & Turrigiano GG Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20: 8812-8821 (2000).

11. Bi G* & Poo M* Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24: 139-166 (2001).

12. Berninger B & Bi GQ Synaptic modification in neural circuits: a timely action. Bioessays 24: 212-222 (2002).

13. Bi GQ Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern87: 319-332 (2002).

14. Bi GQ & Wang HX Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol Behav77: 551-555 (2002).

15. Bi GQ* & Rubin J Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28: 222-228 (2005).

16. Lau PM & Bi GQ Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc Natl Acad Sci U S A 102: 10333-10338 (2005).

17. Rubin JE, Gerkin RC, Bi GQ & Chow CC Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93: 2600-2613 (2005).

18. Shtrahman M, Yeung C, Nauen DW, Bi GQ  & Wu XL Probing vesicle dynamics in single hippocampal synapses. Biophys J 89: 3615-3627 (2005).

19. Wang HX, Gerkin RC, Nauen DW & Bi GQ Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci8: 187-193 (2005).

20. Gerkin RC, Lau PM, Nauen DW, Wang YT & Bi GQ Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol 97: 2851-2862 (2007).

21. Volman V, Gerkin RC, Lau PM, Ben-Jacob E & Bi GQ Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Phys Biol 4: 91-103 (2007).

22. Gerkin RG, Bi G-Q & Rubin JE A phenomenological calcium-based model of STDP, in Hippocampal microcircuits: A computational modeler's resource book. (eds. V. Cutsuridis, B. Grahm & S. Cobb) Springer, (2009).

23. Lau PM & Bi GQ Reverberatory activity in neuronal networks in vitro. Chinese Science Bulletin 54: 1828-1835 (2009).

24. Lau PM & Bi GQ Reverberatory activity in neuronal networks: synaptic mechanisms, dynamics and plasticity, in Coherent Behavior in Neuronal Networks. (ed. J.E. Rubin) Springer, (2009).

25. Zhang JC, Lau PM & Bi GQ Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 106: 13028-13033 (2009).

26. Froemke RC, Debanne D & Bi GQ  Temporal modulation of spike-timing-dependent plasticity.Front Synaptic Neurosci 2: 19 (2010).

27. Stauffer WR, Lau PM, Bi GQ & Cui XT Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. J Neural Eng 8: 044001 (2011).

28. Vishwanathan A, Bi GQ & Zeringue HC Ring-shaped neuronal networks: a platform to study persistent activity. Lab Chip 11: 1081-1088 (2011).

29. Nauen DW & Bi GQ Measuring action potential-evoked transmission at individual synaptic contacts. J Neural Eng 9: 036014 (2012).

30. Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi GQ* & Zhuang X*Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes.Proc Natl Acad Sci U S A 109: 13978-13983 (2012).

31. Tao C, Xia C, Chen X, Zhou ZH & Bi GQ Ultrastructural analysis of neuronal synapses using state-of-the-art nano-imaging techniques. Neurosci Bull 28: 321-332 (2012).

32. Zhang X, Ge P, Yu X, Brannan JM, Bi GQ, Zhang Q, Schein S & Zhou ZH Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20: 105-110 (2013).

33. Gerkin RC, Nauen DW, Xu F, and Bi GQ  Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps. Mol Brain, 6, 38, doi:10.1186/1756-6606-6-38 (2013).

34 Li X, Liu H, Sun X, Bi G, Zhang G. Highly Fluorescent Dye-Aggregate-Enhanced Energy-Transfer Nanoparticles for Neuronal Cell Imaging. Advanced Optical Materials 1, 549-553 (2013).